Engel condition on enveloping algebras of Lie superalgebras
نویسندگان
چکیده
منابع مشابه
Enveloping Algebras of Hom-lie Algebras
A Hom-Lie algebra is a triple (L, [−,−], α), where α is a linear self-map, in which the skew-symmetric bracket satisfies an α-twisted variant of the Jacobi identity, called the Hom-Jacobi identity. When α is the identity map, the Hom-Jacobi identity reduces to the usual Jacobi identity, and L is a Lie algebra. Hom-Lie algebras and related algebras were introduced in [1] to construct deformation...
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولOn Defining Relations of the Affine Lie Superalgebras and Their Quantized Universal Enveloping Superalgebras
Introduction. In this paper, we give defining relations of the affine Lie superalgebras and defining relations of a super-version of the Drinfeld[D1]Jimbo[J] affine quantized enveloping algebras. As a result, we can exactly define the affine quantized universal enveloping superalgebras with generators and relations. Moreover we give a Drinfeld’s realization of Uh(ŝl(m|n)). For the Kac-Moody Lie...
متن کاملPrimeness of the Enveloping Algebra of the Special Lie Superalgebras
A primeness criterion due to Bell is shown to apply to the universal enveloping algebra of the Cartan type Lie superal-gebras S(V) and e S(V ; t) when dim V is even. This together with other recent papers yields Theorem. Let L be a nite-dimensional simple Lie superalgebra over an algebraically closed eld of characteristic zero. Then L satisses Bell's criterion (so that U(L) is prime), unless L ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2015
ISSN: 0022-4049
DOI: 10.1016/j.jpaa.2015.05.036